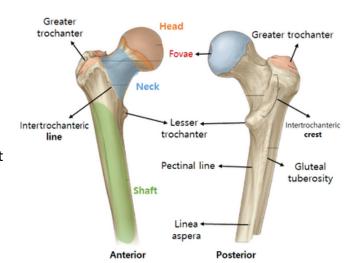


Objectives: To understand the bony anatomy, ligaments, muscle compartments and neurovascular supply of the lower limb, hip joint, knee joint and ankle joint. Further to apply this anatomical knowledge in performing a hip arthroplasty

Bony Anatomy

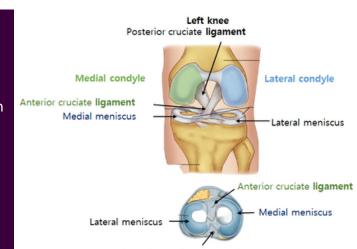
Femur


- Commonest femur fractures are neck of femur fractures:
 - Intracapsular fracture Occurs superiomedial to intertrochanteric line
 - *Surgical emergency as failure to treat can lead to avascular necrosis of femoral head
 - Extracapsular fracture occurs inferolateral to intertrochanteric line


Tibia & Fibula

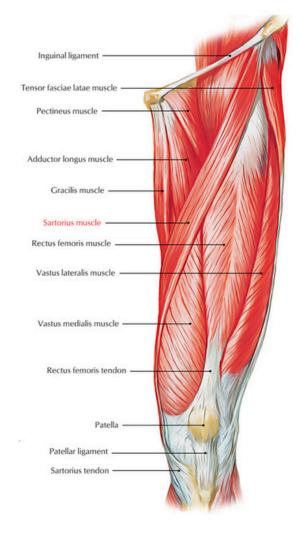
- Tibia and fibula are both long bones located between the knee and ankle joint
- Tibial tuberosity insertion point for muscles
- Proximal & Distal tibiofibular joints synovial joint permitting limited gliding movement

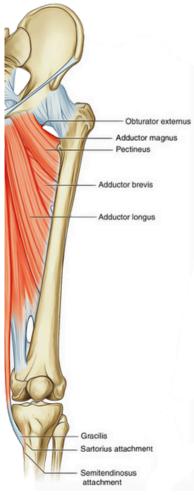
Foot


- The foot is composed of 26 bones of various types, i.e. long bones (metatarsal), short bones (talus).
- The talus has retrograde blood supply,
 * Surgical emergency if talus fracture occurs as can lead to avascular necrosis

Knee joint

- Knee joint is a synovial hinge joint
- Knee joint is stabilised by 4 ligaments, 2 menisci
- Knee locking occurs when femur rotates medially with respect to tibia – permits knee extension with minimal muscular effort
- O'Donoghue's unhappy triad
 - Lateral to medial traumatic force on the knee joint
 - o Classically damages ACL, MCL, Medial meniscus
 - Treatment involves ACL ligament reconstruction and meniscectomy

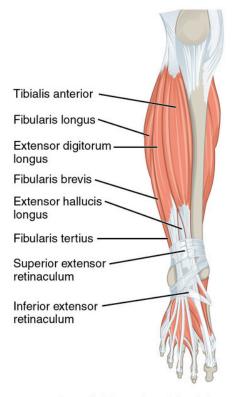



Objectives: To understand the bony anatomy, ligaments, muscle compartments and neurovascular supply of the lower limb, hip joint, knee joint and ankle joint. Further to apply this anatomical knowledge in performing a hip arthroplasty

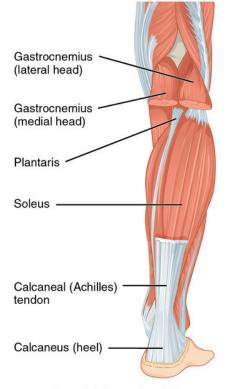
Muscular Anatomy

Thigh:

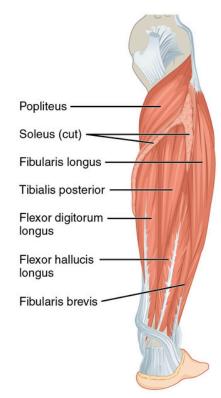
Muscle Compartment	Function	Innervation
Anterior	Hip flexion, Knee	Femoral nerve
Medial	Adduction	Obturator Nerve
Posterior	Hip extension, Knee	Sciatic Nerve



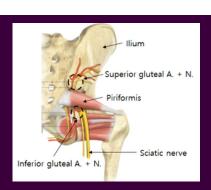
Objectives: To understand the bony anatomy, ligaments, muscle compartments and neurovascular supply of the lower limb, hip joint, knee joint and ankle joint. Further to apply this anatomical knowledge in performing a hip arthroplasty


Muscular Anatomy

Leg:


Muscle Compartment	Function	Innervation
Anterior	Dorsiflexion, Toe	Deep peroneal nerve
Lateral	Eversion	Superficial peroneal
Posterior	Plantarflexion, eversion,	Tibial Nerve

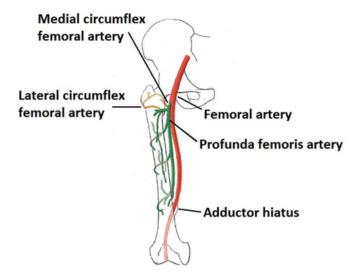
Superficial muscles of the right lower leg (anterior view)


Superficial muscles of the right lower leg (posterior view)

Deep muscles of the right lower leg (posterior view)

Gluteal Region

- Superficial and Deep group
- Gluteus maximus receives inferior gluteal neurovascular supply
- All the rest superior gluteal supply
- Sciatic nerve sits inferior to piriformis


SPECIALITY: TRAUMA AND ORTHOPAEDIC SURGERY

LOWER LIMB ANATOMY

Objectives: To understand the bony anatomy, ligaments, muscle compartments and neurovascular supply of the lower limb, hip joint, knee joint and ankle joint. Further to apply this anatomical knowledge in performing a hip arthroplasty

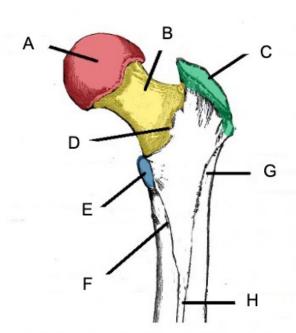

Arterial supply

- Supply to thigh & femur:
 - External iliac artery -> femoral artery (under inguinal ligament) -> Profunda femoris -> Medial + Lateral circumflex arteries
- Supply to leg
 - Femoral artery -> passes through adductor hiatus -> Popliteal artery -> Anterior tibial artery + Tibioperoneal trunk
 - -> Peroneal artery + Posterior tibial artery
 - -> Medial + Lateral plantar artery

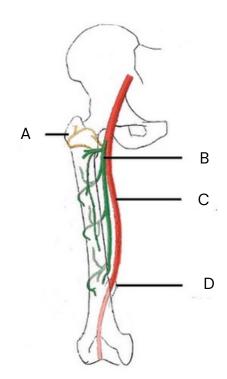
Venous drainage

- Greater saphenous vein drains into femoral vein at **saphenofemoral junction**.
- Lesser saphenous vein drains into anterior and posterior tibial veins at popliteal fossa
 popliteal vein at saphenopopliteal junction -> femoral vein

NERVE SUPPLY TO THE LOWER LIMB - SUMMARY


THIGH

Muscle compartment	Function	Innervation
Anterior	Hip flexion, knee extension	Femoral nerve L2-L4
Medial	Lower limb adduction	Obturator nerve L2- L4
Posterior	Hip extension, knee flexion	Sciatic nerve L4-S3


Muscle compartment	Function	Innervation
Anterior	Dorsiflexion, inversion, toe extension	Deep peroneal nerve L4-S1
Lateral	Eversion	Superficial peroneal nerve L4-S1
Posterior (S+D)	Plantarflexion, eversion, toe flexion	Tibial nerve L4-S3

Test yourself

- 1) Label the structures of the femur:
 - A)
 - B)
 - C)
 - D)
 - E)
 - F)
 - G)
 - H)

- 2) Label the following arterial structures of the femur:
 - A)
 - B)
 - C)
 - D)

Test yourself

MCQ1

Which option most accurately describes the cause of footdrop?

- A) Damage to superficial fibular nerve causing loss of plantarflexion
- B) Damage to common fibular nerve causing loss of dorsiflexion
- C) Damage to tibial nerve causing loss of dorsiflexion.
- D) Damage to deep fibular nerve causing loss of plantarflexion
- E) Damage to saphenous nerve causing loss of dorsiflexion

MCQ 2

A patient twists their ankle and develops swelling on the lateral side of the ankle. This type of ankle sprain most commonly injures which ligament?

- A) Deltoid ligament
- B)Anterior talofibular ligament
- C)Tibionavicular ligament
- D) Posterior talofibular ligament
- E) Spring ligament

MCQ₃

What is the main function of the empty space in the femoral triangle?

- A) Allow the femoral nerve to maintain mobility
- B) When intraabdominal pressure is high It has no significant function
- C) Allow herniation of abdominal contents
- D) Allow the femoral vein to distend when venous return is high
- E) Provide space for lymph nodes within the femoral canal

MCQ 4

An 82 year old female presents after a fall and is diagnosed with a displaced intracapsular fracture of the femoral neck. Which artery is most likely to be compromised?

- A) Profunda femoris artery
- B) Medial femoral circumflex artery
- C) Artery to the ligament of the head of femur
- D) Inferior gluteal artery Lateral circumflex femoral artery
- E) Lateral circumflex femoral artery

MCQ 5

When considering the venous drainage of the lower limb, which vessel do the superior and inferior gluteal veins drain into?

- A) Interal iliac
- B) Extrernal iliac
- C) Deep femoral
- D) Femoral
- E) Common femoral

MCQ 6

Which muscle of the quadriceps femoris crosses at both the hip joint and knee joint?

- A) lliopsoas
- B) Vastus lateralis
- C) Rectus femoris
- D) Vastus intermedius
- E) Vastus Medialis

Test yourself

OSCE Station - Case Based Discussion

A 25-year-old man is brought to the emergency department after a motorcycle accident. He has an obvious deformity of his right leg and cannot weight bear. X-ray confirms a mid-shaft fracture of the tibia He is afebrile and haemodynamically stable.

- Q1. Why are tibial fractures more likely to present as open fractures?
- Q2. Which major arteries runs close to the tibia?
- Q3. Which nerve would you suspect to be damaged in a tibial fracture injury?
- Q4. How would you test this nerve to see if it has been damaged?
- Q5. What is the most serious early complication of a tibial shaft fracture?
- Q6. What is the main potential long-term complication associated with this injury?

6. Delayed or non-union, as the tibia has a relatively poor blood supply. This can lead to chronic pain and deformity if healing is 5. Compartment syndrome - a condition where rising pressure inside a muscle compartment cuts off blood flow 4. Ask the patient to dorsiflex the foot, extend the toes and check sensation in the first web space.

3. Common peroneal nerve, as this is the nerve that supplies the anterior compartment of the leg artery is most at risk of damage in midshaft fractures of the tibia.

2. The anterior tibial artery (in the anterior compartment) and the posterior tibial artery (posterior tibial). The anterior tibial]. This is because the tibia is subcutaneous along most of its length, with very little soft tissue protection.

WCG²: 1) B' 5) B' 3) D' √1) B' 2) ∀' 0) C

A - Medial & Lateral circumflex femoral arteries, B - Deep femoral artery, C - Femoral artery, D - Adductor hiatus

G - Linea aspera

A - Head of femur, B - Meck of Femur, C - Greater trochanter, D - Trochanteric creat, E - Lesser trochanter, F - Pectineal line, Labelling: