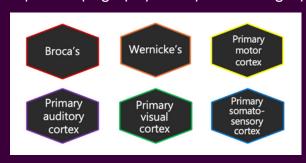

Objectives: Appreciate the fundamental anatomy of the brain and its surroundings, including the skull, cranial base and meninges. Detail the vascular supply to the brain and the ultrastructure of the ventricles. Apply anatomical knowledge to the setting of common neurological prodecures.

Topography of the Hemispheres er

Lateral View

- Gyrus = bump
- Sulcus = groove / infolding
- Primary sulci are anatomically maintained in most individuals and divide the lobes
- Sylvian fissure (lateral sulcus)
 - Frontal & parietal from temporal
- Central sulcus
 - Frontal from parietal


Central

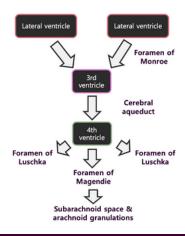
Medial and Coronal Views

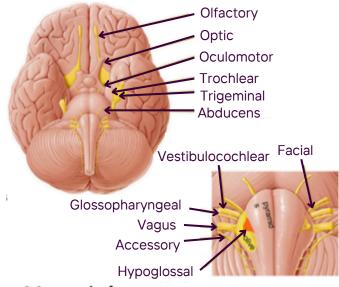
- To truly understand neuroanatomy you need multiple views
- Medial view
 - Brainstem
 - Deep brain grey
 - Grey matter within sagittal sulcus
- Coronal view
 - Ventricles
 - Insula
 - True anatomy of temporal lobe
 - Basal ganglia

Eloquent Topography

- Eloquent areas = localised hubs of specialised functional neurones
- The highest cognitive function requires the whole cortex and white matter to function and integrate
- Eloquent topography is helpful for surgery

SPECIALITY: NEUROSURGERY

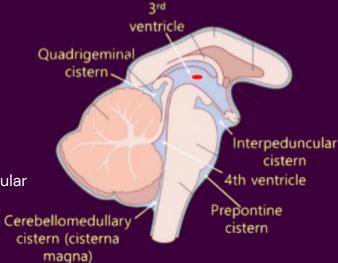

BRAIN ANATOMY


Objectives: Appreciate the fundamental anatomy of the brain and its surroundings, including the skull, cranial base and meninges. Detail the vascular supply to the brain and the ultrastructure of the ventricles. Apply anatomical knowledge to the setting of common neurological prodecures.

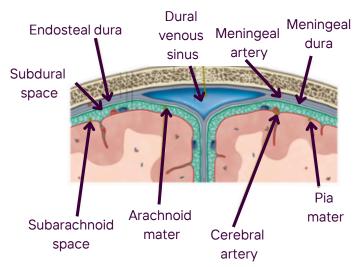
Cranial nerves

Tips to remember:

- The first 2 cranial nerves emerge directly from the cerebral hemispheres
- Remaining 10 from the brainstem
- CNIII oculomotor is sensitive to herniation
- CNIV trochlear exits at posterior brainstem
- CNVIII vestibulocochlear is 2 nerves
- CNXI accessory has spinal routes
- CNXII hypoglossal is the only one between medullary pyramids and the olives



Ventricles


- Function: storage & production (choroid plexus) of CSF, protection and buoyance of the brain
- · Hold 25ml of the 150ml of CSF
- Foramen of Munro = interventricular foramen
- 3rd to 4th via: Cerebral aqueduct
- Foramen of Magendie = median aperture
- Foramen of Luschka = lateral apertures
- The ventricles drain CSF into the subarachnoid cisterns

Subarachnoid Cisterns

- Some key cisterns
 - Cerebellomedullary
 - Quadrigeminal
 - Interpeduncular
 - Prepontine
 - Sylvian
 - Cerebellopontine (angle)
- Each subarachnoid cistern has important neurovascular contents that should be remembered
- They provide a road map of the brain for surgery

Objectives: Appreciate the fundamental anatomy of the brain and its surroundings, including the skull, cranial base and meninges. Detail the vascular supply to the brain and the ultrastructure of the ventricles. Apply anatomical knowledge to the setting of common neurological prodecures.

Meningeal Layers

- Dura mater thick fibrous, split into endosteal layer and meningeal layer
 - Subdural space potential
- Arachnoid mater thinner and looser, bridges over sulci
 - Subarachnoid space actual
- Pia mater microscopic layer, adheres closely to the brain

Posterior division

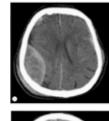
Blood Supply

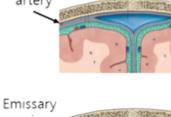
- Meningeal arteries supply the dura mater and bones of the calvaria
- The most prominent of these is the middle meningeal artery (branch of maxillary artery)
 - The anterior branch runs close to the pterion of the skull
- Meningeal vessels can be found in the endosteal dura
- Cerebral vessels can be found in the subarachnoid space
- Emissary veins cross all levels subdural shear plane

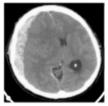
Anterior division Middle meningeal artery

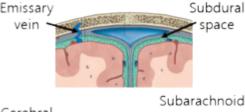
Meningeal

Extradural haematoma

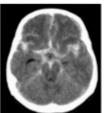

- Most commonly pterional fractures
- Do not cross sutures endosteal dura fixed
- Biconvex/lentiform appearance

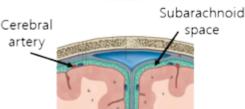

Subdural haematoma


- Emissary veins
- Shear force between dura mater and arachnoid
- Cross suture lines crescent sign


Subarachnoid haemorrhage

- Cerebral arteries burst (commonly aneurysm)
- Blood fills the subarachnoid space
- Cisterns can be seen filling with blood on CT





Extradural

SPECIALITY: NEUROSURGERY

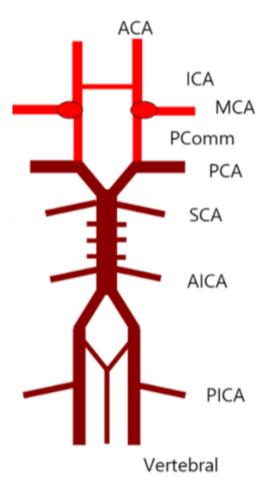
BRAIN ANATOMY

Objectives: Appreciate the fundamental anatomy of the brain and its surroundings, including the skull, cranial base and meninges. Detail the vascular supply to the brain and the ultrastructure of the ventricles. Apply anatomical knowledge to the setting of common neurological prodecures.

Arterial Supply to the Brain Circle of Willis

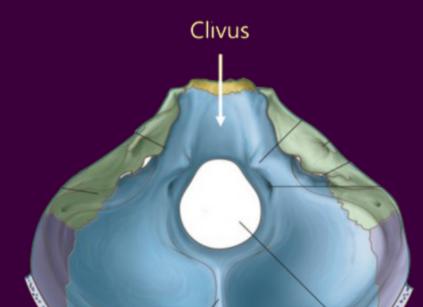
- The Circle of Willis is an in-built mechanism to allow for collateral supply to the brain
 - If there is restricted blood flow in one area, total ischaemia can be avoided
 - Terminal branches do not have this luxury
- The supply can be divided into anterior and posterior circulation
 - Each route has distinct signs and symptoms when obstructed

Vertebral artery branches (posterior circulation)

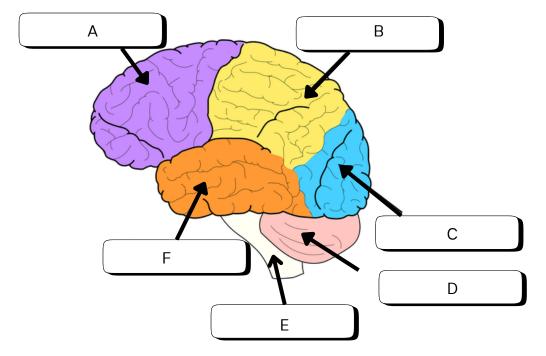

- Posterior inferior cerebellar artery (PICA)
- · Anterior spinal artery
- · Join to form: Basilar artery

ICA branches (anterior circulation)

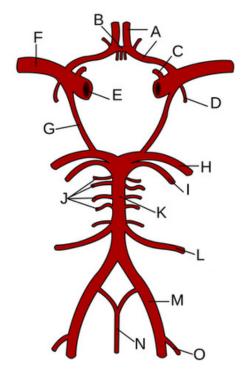
- Anterior cerebral artery (ACA)
- · Middle cerebral artery (MCA)
- Anterior communicating artery (A.comm)


Basilar artery branches

- Anterior inferior cerebellar artery (AICA)
- Posterior cerebral artery (PCA)
- Pontine branches
- Superior cerebellar artery (SCA)
- Posterior communicating artery (P.Comm)


Neurovascular Bundle

- The basilar artery is formed by the two vertebral arteries
- Sits ventral to the pons on the clivus of occipital bone
- Gives off pontine branches
- The internal carotid arteries enter the middle cranial fossa
- Just above the foramen lacerum (not through it)



Test yourself

1) Label the lobes and stuctures of the brain:

2) Label the arteries within the Circle of Willis:

Test yourself

MCQ1

A 68-year-old man suddenly develops weakness of the right face and arm, along with expressive aphasia. Which artery is most likely occluded?

- _A. Left anterior cerebral artery
- B. Right anterior cerebral artery
- C. Left middle cerebral artery *
- D. Right middle cerebral artery
- E. Left posterior cerebral artery

MCQ₂

A 58-year-old woman reports numbness and tingling over her right hand and face.

Which cortical area is most likely involved?

- A. Left precentral gyrus
- B. Right precentral gyrus
- C. Left postcentral gyrus, lateral surface
- D. Left superior parietal lobule
- E. Right postcentral gyrus, medial surface

MCQ3

IA 22-year-old man is brought to the emergency department after a motorcycle accident. He was briefly unconscious, then awake and talking, but later became comatose. CT scan shows a biconvex (lens-shaped) hyperdense lesion.

What type of hemorrhage is most likely?

- A. Subdural hemorrhage
- B. Subarachnoid hemorrhage
- C. Intracerebral hemorrhage
- D. Intraventricular hemorrhage E. Epidural hemorrhage

MCQ4

A 40-year-old man presents with headache, nausea, and papilledema. MRI shows dilatation of the lateral and third ventricles, while the fourth ventricle appears normal. Where is the obstruction most likely located?

- A. Cerebral aqueduct (of Sylvius)
- B. Foramen of Magendie
- C. Foramen of Luschka
- D. Interventricular foramen (of Monro)
- E. Central canal of the spinal cord

MCQ 5:

A 60-year-old woman has loss of taste and sensation on the posterior third of her tongue and an absent gag reflex on the right side.

Which cranial nerve is damaged?

- A. Vagus (X)
- B. Facial (VII)
- C. Glossopharyngeal (IX)
- D. Hypoglossal (XII)
- E. Trigeminal (V)

MCQ 6

A 58-year-old man speaks fluently but his sentences make no sense, and he cannot understand spoken language. Which function is most likely impaired?

- _A. Speech production
- B. Motor planning
- C. Hearing
- D. Writing
- E. Language comprehension

Test yourself

OSCE Station - Case Based Discussion

A 58-year-old man suddenly collapses at work. He briefly regains consciousness but appears confused and complains of the "worst headache" of his life." In the emergency department, he becomes drowsy and develops neck stiffness. On examination, his pupils are equal and reactive, and there is no limb weakness.

A CT brain shows blood in the basal cisterns and around the circle of Willis.

- Q1. What imaging study is vital for diagnosis and what would you expect to see?
- Q2. Explain the anatomy of this pathology with reference to the meningeal layers.
- Q3. What is the most common cause of this condition, and which vessel is usually involved?
- Q4. What is the main immediate danger to the brain following this event?
- Q5. What specific drug is given to reduce the risk of this complication, and how does it work?
- Q6. What monitoring and further investigation does this patient require after stabilization?

(coiling or clipping)

6) Meurological monitoring, CT angiography or digital subtraction angiography to identify the aneurysm for definitive treatment 2) Nimodipine; calcium channel blocker that prevents cerebral vasospasm

4) Vasospasm, leading to secondary cerebral ischemia.

3) Commonly due to rupture of a berry (saccular) aneurysm

2) Bleeding occurs into the subarachnoid space, between the arachnoid mater and pia mater. 1), Imaging: Non-contrast CT brain, Findings: Hyperdensity in the subarachnoid spaces

2. Ā) ACA B) Á.comm C) Óphthalmic Ď) Anterior choroidal E) Internal carotid F) MCA G) P.comm H) PCA I) SCA J) Pontine arteries K) Basilar L) AICA M) Vertebral N) ASA O) PICA MCQs: I) C, 2) E, 3) C, 4) A, 5) C, 6) E A) Frontal B) Parietal (C) Occipital D) (Cerebellum E) Brainstem F) Temporal